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Influences of grain size and precracking load on 
the critical stress intensity factor of mild steel 
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Department of Mechanical Engineering, National Central University, Chung-li, Taiwan, 
Republic of China 

The effects of grain size and precracking load on the critical stress intensity factor are studied. 
A plane stress model of elastic-plastic stress distribution which includes the strain hardening 
effects is used. The effects of residual stresses and strain hardening due to fatigue load are 
calculated by choosing plastic zone size as fracture criterion. Experimental results are obtained 
to demonstrate the reliability of theoretical calculations. 

1. Introduct ion 
In the test procedures for critical stress intensity 
factor measurements, it is recommended procedure to 
precrack the specimen by fatigue. But the possible 
effects of residual stresses caused by fatigue are not 
considered. 

In order to establish the role played by residual 
stress distributions in crack propagation rates, several 
authors [1, 2] have attempted to calculate and measure 
the residual stresses by different models and experi- 
mental techniques. For example, Elber [3], and Adans 
[4] focused on crack closure phenomena to obtain 
information on residual stress. A direct measurement 
of residual stress performed in photoelastic materials 
is given in [5]. Tirosh [6] used a theoretical model, 
based on dislocation mechanics, to predict the residual 
stress distribution resulting from fatigue cracking. 
Dahl [7] has studied experimentally the influence of 
plastic zone size on fracture toughness. 

It has been proven for many alloys, especially for 
the lower yield point of steels, that the grain size has 
an influence on the tensile yield stress. The lower yield 
stress of ~-iron is often taken to depend on the inverse 
square root of the polycrystal ferrite grain diameter 
according to the Hall-Petch relation [8, 9], 

ay = ~rOy + kyd -1/2 (1) 

where a0y and ky are experimental constants, d and ay 
are grain size and yield strength, respectively. Inves- 
tigations have been made as to the influence of grain 
size on other mechanical properties such as fatigue 
properties [10, 11], crack propagation [12, 13] and 
fracture toughness [7, 14, 15]. It is not surprising 
perhaps, that the effect of grain size on Kic fracture 
toughness has not been clarified. All the above- 
mentioned papers focus on experimental results. 

There are few papers which discuss the influence of 
precrack histories on fracture toughness. This is also 
true for theoretical analysis. The authors [16] used a 
plane stress model of elastic-plastic stress distribution 
to study the influences of residual stress and strain 
hardening on the critical stress intensity factors. The 
critical plastic zone is chosen as fracture criterion to 

evaluate the instability of crack extension. In the 
present paper, this work is extended to study the effect 
of grain size on the critical stress intensity factor 
during the different precracking loads. Hall-Petch 
effects are added to the previous computer program, 
and experimental results are obtained to show the 
reliability of theoretical calculations. 

2. Stress  distr ibut ion n e a r  a crack 
The stress distribution in a cracked element can be 
calculated by the theory of elasticity, with the assump- 
tion of linear elastic behaviour. 

The most simple model is an infinite sheet loaded by 
a tensile stress cr (Fig. 1). The Westergaard method 
[17] of calculating the stress distribution near a sharp 
crack is the best method to examine the properties of 
a particular type of crack. A suitable complex function 
is chosen to satisfy boundary conditions and the 
properties of compatability. The solution of plane 
stress distribution S(x )  in an infinite plate with a small 
crack length 2c under uniaxial tension at y = 0 is 
given as follows: 

O" 
S(x )  = [1 - (c/x)2] I/~ (2)  

The stress distribution of a plate with finite width 2b 
can be obtained by modifying the solution of a factor 
f ( c )  which is derived by making the summation stresses 
equal to applied load. This characteristic is shown in 
Equations 3 and 4. 

2 f~ a*x (x  2 - c 2)- 1/2 d x  a2b (3)  

a* = ab(b 2 -  c2) -I/~ = ~f(c)  (4 )  

where f ( c )  = b(b 2 - c2) -I/2 = [1 - (c/b)2] -112 = 
(1 - N2) -1/2 in which the dimensionless parameter 
N = c/b is used. 

Analytical solutions of stress distribution in the 
field of a mixed elastic-plastic field has been obtained 
for a plane stress model. Considering the elastic stress 
distribution in plane stress, as shown in Fig. 2, the 
plastic zone is supposed to extend a distance D2 - c 
ahead of the crack tip (x = c). Owing to strain 
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Figure I Westergaard's model o f  a crack under uniaxial tension in 
an infinite plate. 

hardening, the tensile stress S ( x )  is assumed to be 
linearly distributed beyond the yield strength within 
this zone. So S ( D 2 )  = try and we define S(c )  = o-,. 

The material outside the plastic zone is assumed to be 
the same as the elastic stress. The elastic stress is 
distributed for an imaginary, extended crack of  length 
2cl, which is expressed by curve BC. 

Lal [18] has studied the influence of  ultimate 
strength o-u on plastic tensile instability. It was proved 
that the area of  yielded zone decreases as hardness of  
the material increases. He pointed out that as the 
stress at the crack tip exceeds the ultimate tensile 
strength of  the material, the crack extends further 
through the plastically deformed region. For this 
reason, o-, may be assumed equal to a,  after fatigue 
cracking. 

The stress distributions over the whole plate under 
loading condition are shown in Equations 5 and 6. 

S ( x )  (o-c - o - y ) ( D 2 -  x ) / ( D 2 -  c) + Oy 

D 2 > ~ x >  c 

(5) 

S ( x )  ~- • f(c  1 ) x ( x  2 -- /3 2 ) -  112 x >i D2 ( 6 )  

and S(D2)  = % ,  

(Ty -~  a f ( c i ) D ( D ~  - c~) -'/2 (7) 

The value of cl can be determined under the condition 
that the total loads or curve A B C  and curve A ' B ' C "  

are the same 

f :  S(X) d x  = f f  O-f(c)x(X 2 -- C2) -1/2 d x  ( 8 )  

= a f ( c )  f~ x ( x  2 --  c2) - 1/2 dx (9) 

½ ( 3  2 C)(O'y + O'c) + O-f(Cl)(X 2 r'2"~-1/21b - -  ~ t , l ]  ID 2 

= a f ( c ) ( x  2 --  c2)-'/2lb (10) 

1.(D 2 -- c)(o-y + a,) -- a f ( c , ) ( D ~  --  c~) -'/2 = 0 

(11) 

The two unknowns c~ and D2 can be obtained by 
solving Equations 7 and 11 simultaneously. 

I f  the strip is unloaded, the stress in the plastic zone 
does not fit with the elastic stress distribution. This 
misfitting causes residual stresses. Full elastic unloading 
will cause residual compressive stresses at A exceeding 
the compressive yield strength. As a result of  the 
unloading process, a reversed plastic deformation will 
occur between c and/)4.  Obviously/)4 - c is much 
smaller than D2 - c. The elastic-plastic stress distri- 
bution R ( x )  and plastic zone size after unloading are 
solved by the same procedure as loading condition. 
Compressive yield strength is assumed to be equal to 
tensile yield strength. Equations 12 and 13 are usedto 
solve c2 and D4 

D2 - /:)4 
= _ _  (o -o  - o - ~ )  

- o-Y D 2 - c 

+ o-, - o-f(c2)D41(O 2 - d)  -'/2 (12) 

(o-¢ + ~y)(D4 - c) + ½(D4 - c)D2 - D_____ 4 (a¢ - O;y) 
0 2 - -  c 

- o-f(c)(h  - d) -'/2 = o - f ( c 2 ) ( D i  - 4 )  - " 2  

(13) 

It can be seen that c2 and /)4 are found by simul- 
taneously solving Equations 12 and 13. If the strain 
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Figure 2 Schematic elastic-plastic stress distribution 
near a notch after loading and unloading. 
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T A B L E  I Chemical composition of the steel investigated in wt % 

Element C Si Mn P S Cr Ni Cu 
wt % 0.0758 0.0934 0.2859 0.0037 0.034 0.0417 0.0311 0.111 

hardening effect does not exist, then the material within 
the plastic zone is rigid-perfectly plastic and tr¢ is equal 
to yield strength %. 

3. Experimental procedure and results 
Chemical compositions of the plain carbon steel 
specimen are given in Table I. A range of grain size 
from 1.19 to 6.03 #m in diameter was provided by heat 
treatments at various temperatures for various times 
as shown in Table II. The material was machined to 
the centre crack specimens as shown in Fig. 3, by 
electric discharge machining. The specimens were pre- 
cracked to ~ 18.bmm under three different load 
conditions. The method of measuring the K~ values is 
suggested [19] on a closed loop electro-hydraulic testing 
machine at room temperature. The K~ value can be 
calculated by the following equation [20] 

Kc = T see (14) 

where P is a fracture load and t is specimen thick- 
ness. • = 2a/W and W = 2b. The results of yield 
strength try and K¢ values are shown in Table IV. From 
the experimental data, the constants troy and ky in 
Equation 1 can be obtained by the least square method. 
These data are listed in Table III. 

4. The influence of fatigue load on 
fracture behaviour 

There are two reasons for the influence of fatigue load 
on critical stress intensity values. Before our discussion, 
we should choose a suitable fracture criterion, critical 
plastic zone Qcr, to prevent instability crack extension 
from occurring. Fracture philosophy by means of  
plastic zone size is similar to the COD (crack opening 
displacement) concept, but has the advantage that the 
plastic zone is easily determined by K-value cancel- 
lation of the Dugdale crack model [21], and it is con- 
venient to calculate the effects of strain hardening and 
compressive residual stress on K~ from this criterion 
directly. It is well known that under plastic deforma- 
tion when strained to a particular value of the stress, 
say tr* (see Fig. 4) a number of dislocation sources are 
activated, as a result of which the dislocation density 
increases. The resistance to further deformation also 
increases. When the material is released and reloaded, 
yielding of the material does not take place until the 
value of the applied stress reaches the value of tr*p. In 
other words, the yield strength of the strained material 

T A B L E  II Grain diameter and heat treatment condition 

d(#m) Heat treatment condition 

1 .19  900°C 0.5 h, furnace cooling to 700 ° C, then air cooling 
3.01 1000 ° C 1 h, furnace cooling to 700 ° C, then air cooling 
4.64 1000°C 2 h, furnace cooling to 700 ° C, then air cooling 
6.03 I I O0°C 5 h, furnace cooling to 700 ° C, then air cooling 
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is increased to tr*. This effect can be evaluated by 
Equation 15. 

hardening effect = [~+Q°~ [tr*(x) - try] Strain dx 

(15) 

The second reason is compressive residual stresses. 
Dahl [7] had studied the influence of plastic zone size 
on the fracture toughness value. He concluded that 
fracture toughness increased with plastic zone size. 
Within plastic zone size the compressive residual 
stresses are the main reason to increase the critical 
stress intensity factor. 

The residual stresses between the crack tip and 
c + Qcr can affect the load P in Equation 14. Com- 
pressive residual stress must be compensated by 
external load which makes the fracture load P increase. 
Conversely, tensile residual stress has an inverse effect 
on fracture load. This effect is equal to 

Residual stresses effect = ~ + Q= R(x) dx (16) 

where R(x) is elastic plastic stress distribution after 
unloading. 

For theoretical calculation, critical plastic zone 
must be determined first. Burdekin [22] using the 
Dugdale method has derived Equation 17 

= 
rca 8tryaI~(~tr~Z 

8trya log see - -  = 
~E 2try roE \2 try,] 

1 + . 1  ,,7, 
+ ~ \2  try/ / 

for nominal stress value less than 0.7bay, a reasonable 
approximation for 6 (crack opening displacement), 
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Figure 3 Centre cracked plate dimensions. 



T A B L E  I I I  Yield strength and ultimate strength of different 
grain size specimen 

d(#m) I. 19 3.01 4.64 6.03 

% (kg ram-2 ) 35.96 31.66 31.10 30.63 
%(kgmm -2) 45.59 45.80 48.85 53.64 

Note: the constants of a0y and ky are equal to 25.61 and 0.35. 

using only the first term of this series is 

71002a 
6 = (18) 

e00, 

For a through-thickness crack of length 2a, 

/fi = 00x/-£  ( 1 9 )  

thus, 

bEar = K~ (20) 

Since E = 00y/ey, the following relation exists: 

= (K,__~" (21) 
ty \00y/  

Substituting Equation 18 into Equation 19 eliminates 
00. At the onset of crack instability, we can get 

- -  = ( 2 2 )  
6y 

From the Dugdale approach 

a 7[a 1 (7[a'~ 2 
= c o s - -  = 1 - 

a + 0 2a, T. \2"~ax] 

1 

+ ~.. k2ay/ 

Neglecting higher order term, Q is found as 

7[ 2 0 °2 a 7 [ g ? l  

Q = 8a~ = 8 4  (24) 

By substituting Equation 20 into Equation 24, and at 
the onset 

7[E 6c r (25) 
Qer = 800"--~ 

Equation 25 is identical with the limit form of Q for 
a/Cry ~ 0 on the basis of the Dugdale model, and its 
general applicability, irrespective of 00/% value, have 
been verified experimentally [21]. For the material 
used in our studies, modified value of K~ (mod) is 
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Figure 4 Stress-strain curve. 

calculated by iteration and shown in Table IV. The 
parameters A and B are 

A = 2t f~+~" [00"(x) - %] dx 

B = - 2 t  [f~" R(x) dx 

And Pa = Pc, - A - B where P~, is the experimental 
fracture load. Pa is the true fracture load which is 
subtracted A + B from Pc,. A + B expresses the 
double effects of strain hardening and compressive 
residual stresses. In Table IV, a very interesting 
behaviour can be seen. Ko (exp) values which were 
calculated by Pex are increased with the increasing of 
grain size. It conflicts with the Hall-Petch effect, but 
the values K~ (rood) modified by the present computer 
program agree with the Hall-Perch effect. From 
Table III, the differences between yield strength and 
ultimate strength increased with the increasing of 
grain size. Thus it can be concluded that strain 
hardening effects are dominant for larger grain size 
(also shown in Table IV and compared to the values 
of A). Modified results K~ (mod) in which both strain 
hardening and residual stresses effects are considered 
are compared with experimental results in Table IV. 
From these results, it can be seen that the percentage 
errors of(P~ - P~v)/P~v x 100% are significantly lower 
than experimental values (P~x- Pav)/P~v × 100%. 
The predicted data of Ko (theo) which are calculated 
from Hall-Petch relationship and computer program 
directly are shown in Table IV. It can be seen that 

T A B L E I V Experimental, modified and theoretical results 

d(p.m) M 2c P~x K~ (exp) A(kg) B(kg) P,(kg) /~ (mod) Kc (theo) 
(man) (kg) (kgmm -3/2) (kgmm -3/2 ) (kgmm ~3/2 ) 

1.19 0.244 19.61 3150 136.69 154.31 4.06 2988.6 131.33 131.25 
0.365 18.64 3400 139.41 160.21 14.82 3216.3 132.83 132.76 
0.487 19.50 3550 142.25 165.79 41.85 3300.5 133.06 132.99 

3.01 0.244 19.12 3600 137.88 310.90 2.69 3283.8 126.59 126.95 
0.365 17,10 4075 138.00 316.17 9.82 3739.2 127.66 127.98 
0.487 17.94 3575 138.24 291.14 22.42 3239.2 125.28 125.62 

4.64 0.244 20.73 3475 141.10 370.01 2.35 3100.3 126.16 125.90 
0,365 18.30 3775 138.17 368.76 9.12 3388.3 124.01 123.92 
0.487 19.36 3550 139.44 360.76 17.40 3154.4 123.90 124.20 
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theoretically predicted data concisely matched with 
modified data. It is shown that the present model is 
suitable to calculate the effect of precrack load on 
critical stress intensity factor measurement. The effects 
of grain size can be included in the present computer 
program, and true K¢ values can be obtained under 
arbitrary fatigue loading conditions, 

5. Conclusion 
A study is made on the influences of grain size under 
different precracking loads on the critical stress inten- 
sity factor under plane stress condition. The results 
obtained are summarized as follows: 

1. Analytical results are closely matched with the 
experimental data. 

2. Hall-Petch effects can be included in the present 
computer program for mild steels. Kc values increased 
with the decreasing of grain sizes. 

3. The effect ofprecracking load on the K~ value can 
be explained through the strain hardening effect and 
compressive residual stress within the plastic zone size. 

4. The true K~ value can be obtained by subtracting 
the combined load differences due to strain hardening 
and compressive residual stress from the experimental 
result under arbitrary fatigue loading conditions. 
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